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Tamarix is a complex and wide ranging target genus 

1. 5 invasive Tamarix species
2. Extensive hybridization in NA

T. parviflora T. ramosissima



T. ramosissima T. parviflora

Central Asian Diorhabda prefer T. ramosissima over T. parviflora

Dalin et al, 2009 Environ Entomol 38:1373-1378 



Tamarix is a complex and wide ranging target genus

1. 5 invasive Tamarix species
2. Extensive hybridization in NA
3. Diorhabda from one or two sites in central Asia would not be adapted to 

conditions over the entire range of Tamarix in North America
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Diorhabda from one or two sites in central Asia would not be adapted to 
conditions over the entire range of Tamarix in North America

Diorhabda populations are adapted to the day 
length patterns, temperatures and possibly 

the predators found at their origin; this 
restricts range in North America.  
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Diorhabda from Crete remain in diapause longer under warm temperatures than Diorhabda from 

central Asia, probably an adaptation to higher winter temperatures in the Mediterranean

Predators prevent 
establishment at some 
locations



Matching host plant (Tamarix species and there hybrids) and region with the 
appropriate Diorhabda ecotype is and will continue to be critical to the success 
of the Tamarix biocontrol program.  We needed a way to distinguish Diorhabda

ecotypes and recognize their potential for hybridization.

Molecular analysis Analysis of morphology

Analysis of hybridization potential 
between ecotypes
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Tracy and Robbins (2009) define 5 
species based on subtle 

morphological characters, including 
differences in the sclerites of the 

endophallus

Classic lock and key



From: Tracy and Robbins (2009) Zootaxa 2101

Structural differences in sclerites 
of the endophallus are used to 
divide Diorhabda into 5 species

D. elongata

D. carinulata
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Objectives

 Determine the molecular genetic relationships 
among the Tamarix-feeding members of the 
Diorhabda elongata species complex

 Examine concordance of molecular genetic traits 
with morphological, behavioral and ecological 
traits 

 Develop molecular genetic assays for 
determining hybridization between the 
important genetic lineages



Outgroups and Analysis

 Ingroup:
 Diorhabda spp:

 Galerucinae: Galerucini

 Outgroups:
 Galerucella birmanica from China

 Galerucinae: Galerucini

 Diabrotica sp.
 Galerucinae: Luperini

 Phylogenetic inference:
 Distance, parsimony and likelihood methods



DNA Regions/Markers

 Mitochondrial DNA
 Sequenced 1270 nt of cytochrome oxidase I (COI)
 316 variable sites
 240 parsimony-informative sites
 3rd codon position sites most variable
 Transition/transversion ratio near 4:1
 36 of 49 sequences unique

 Amplified Fragment Length Polymorphisms (AFLPs)
 Identified 115 AFLPs using 4 selective primer pairs
 100% repeatability
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Ashgabat, Turkmenistan
Both carinata and carinulata collected from same site
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Astro Beach, Posidi Beach, 
Kyparissia, Crete

Tunisia

Karshi, Buchara, Ashgabat

Kazakhstan, Turpan, 
Fukang, Ashgabat
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Diorhabda carinulata

AFLP-Based UPGMA Dendogram



Conclusions

 4 or 5 robust, deep DNA lineages are present in 
the Tamarix-feeding Diorhabda examined to date
 The additional mt-DNA lineage may be due to 

lineage sorting 
 The lineages are largely, but not completely, 

consistent with:
 Proposed species delimitations based on 

morphology
 Reproductive compatibility relationships within and 

among lineages



Matching host plant (Tamarix species and there hybrids) and region with the 
appropriate Diorhabda ecotype is and will continue to be critical to the success 
of the Tamarix biocontrol program.  We needed a way to distinguish Diorhabda

ecotypes and recognize their potential for hybridization.

Molecular analysis Analysis of morphology

Tracy and RobbinsKazmer

Thompson and Bean

Analysis of hybridization potential 
between ecotypes



 Measured:
 Egg viability.
 Time and percentage of larvae into pupation. 
 Time and percentage of pupae  becoming adults.

 Almost all tests performed in small cup cages.
 F1 and F2 Generations with backcrosses for most.
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Crosses within D. carinulata are viable
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Crosses between D. carinulata and D. elongata show low egg viability in the F2
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Crosses between D. carinulata and D. carinata show low egg viability in the F2
D. carinulata and D. sublineata crosses need to be done
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D. sublineata D. carinataX D. sublineata D. elongata

Crosses between D. sublineata and D. carinata or D. elongata yield high egg viability
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D. carinata and D. elongata hybrids are viable



carinulata



carinulatacarinata

No



carinulata
elongataNo



carinulata
sublineata ?



sublineata elongata
carinata

Hybrids show 50% egg viability, hybrid lines are stable
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AFLP/PCOA Analysis of 
Hybridization:

An Example Using Crete
and Tunis Ecotypes

For an example in tamarisk itself see:
Gaskin, J.F and D.J. Kazmer. (2009) Introgression 
between invasive saltcedars (Tamarix chinensis and T. 
ramosissima) in the USA. Biological Invasions 11:1121-1130



Data and Analysis

 52 AFLPs in the Crete and Tunis lineages
 57 Individuals
 Binary AFLP data -> Dice similarity coefficients 

-> Principal Coordinates Analysis (PCOA)
 PCOA is an ordination technique similar to Principal 

Components Analysis (PCA)



Principle Coordinates Analysis Axis 1
(58% of variance)
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Conclusion

 AFLP/PCOA is a powerful tool for analyzing 
hybridization between genetically distinct 
lineages.  Hybrids were discovered between D. 
sublineata and D. elongata.
 But note the requirement for genetically distinct 

lineages



Molecular and morphological analysis show that 4 closely 
related species in the D. elongata complex are currently 
being used in Tamarix biocontrol.  These have traits that can 
play a role in targeting specific Tamarix infestations and 
ecological settings.  Molecular techniques allow tracking of 
species and tracking genetic introgression between species.
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