

Tracy Johnson, Julie Denslow and Warea Orapa

Tropical islands are famous as hotspots of diversity, both biological and cultural

Biodiversity Hotspots: Which stand to lose most to invasion?

Strong cultural traditions

Polynesian voyaging

Maisu and Hokule'a at Chuuk. Photo: Mike Taylor

Hawaiian agriculture

an Wilson

Impacts of land use

Coastal areas have been converted for agriculture and homes; Upland forests continue to be valued culturally

... and as a water resource

Land conversion on Hawai`i Island

Samoan agroforestry

Native forests extend to the sea

Severe climates / Dynamic ecosystems

Tropical Cyclone Ron, 1998 (NOAA)

Severe climates / Dynamic ecosystems

Aftermath of Cyclone Heta, American Samoa 2004

#1: Spread of Invasive species

Established invaders continue to spread

Existing biosecurity measures often are inadequate

Carnegie Airborne Observatory

Island Area (ha x 1000)

Larger islands (esp. high islands with richer native flora, more people and greater economic activity) tend to have more invasive alien plants

- Invasive species
- Impacts of land use
- Natural disturbance cycles, especially storms
- All of the above likely will worsen with climate change
- Capacity for biocontrol research is limited

Introductions for biocontrol in Hawaii have declined greatly, while arrivals of new invasive species increase (Messing & Wright 2006)

Research Statio

- Invasive species
- Impacts of land use
- Natural disturbance cycles, especially storms
- All of the above likely worsen with climate change
- Limited capacity for biocontrol research
- Negative attitudes toward new introductions of any kind

natural enemies introduced for pest control

Biocontrol often is viewed as equally risky and unwelcome as alien pest introductions

Conserving island ecosystems with biocontrol: Opportunities

• Disharmonic flora and fauna can simplify nontarget issues

Potential biocontrols for Melastomataceae in Hawaii

Miconia

Euselasia chrysippe

Cryptorhynchus

Tibouchina

Nematode galls - Costa Rica

Clidemia

Conserving island ecosystems with biocontrol: Opportunities

Islands are excellent model systems for ecological science

- compact, with steep gradients of rainfall and temperature
- readily identifiable patterns in soil chemistry

Figure 1 Distribution of mean annual precipitation on the Island of Hawai'i, from Giambelluca *et al.* (1986). The fine lines are elevation contours (500 m); coarse lines are precipitation isohyets (mm year⁻¹).

@ 2002 Blackwell Science Ltd, Journal of Biogeography, 29, 573–582

(Vitousek 2002)

Ost-release monitoring plans for strawberry guava biocontrol

Plot-based demographic studies began in 2004

Can biocontrol reduce strawberry guava's impacts on native ecosystems?

or on Hawaiian agriculture (by reducing pest fruit flies)?

Fig, 5. Strawberry guava detected within and under overstory canopies

Carnegie Airborne Observatory

Conserving island ecosystems with biocontrol: Opportunities

Islanders have strong sense of place and eagerness to participate in conservation

Invasive species management and forest restoration in American Samoa (photos: T. Togia)

American Samoa

Restoring native species habitat in Hawai`i

(photos: J. Penniman & J. Beachy)

Clearing strawberry guava requires intensive effort

Conserving island ecosystems: Crucial targets

• Ecosystem transforming weeds (dozens of species)

• Ants

