Risk Assessment for Biological Control Introductions: Will the Ecologists *Ever* Be Satisfied?

Dan Simberloff
Department of Ecology and Evolutionary Biology
University of Tennessee

Euglandina rosea = rosy wolf snail

Risk Assessment for Biological Control Introductions: Will the Ecologists *Ever* Be Satisfied?

Dan Simberloff
Department of Ecology and Evolutionary Biology
University of Tennessee

1) Direct effects on non-targets:

What is the host range?
Is there a population impact?

- 2) Indirect effects on non-targets
- 3) Range change of biocontrol agent, target, or non-target

A strategy for evaluating the safety of organisms for biological weed control

By A. J. WAPSHERE

CSIRO Biological Control Unit, 335 Avenue Abbé Paul Parguel, 34000 Montpellier, France

Table 1. Centrifugal phylogenetic method applied to Chondrilla juncea

Testing sequence	Plants to be tested	Host range determined if plants at that phylogenetic level remain unattacked
1	Other forms of C. juncea	Specific to C. juncea clone
2	Other Chondrilla species	Specific to C. juncea
3	Other members of tribe Crepidinae	Specific to genus Chondrilla
4	Other members of subfamily Cichoriaceae	Specific to tribe Crepidinae
5	Other members of family Compositae	Specific to subfamily Cichoriaceae
6	Other members of the Order Synantherales. Member of	Specific to family Compositae

Campanulaceae, Lobeliaceae, etc.

Larinus planus

Rhinocyllus conicus

For entomophages:

- 1) systematics often poorly worked out
- 2) ecological similarity of hosts
- 3) generally poor knowledge of non-target hosts

cf. Messing 2001

Kuhlmann et al. 2006

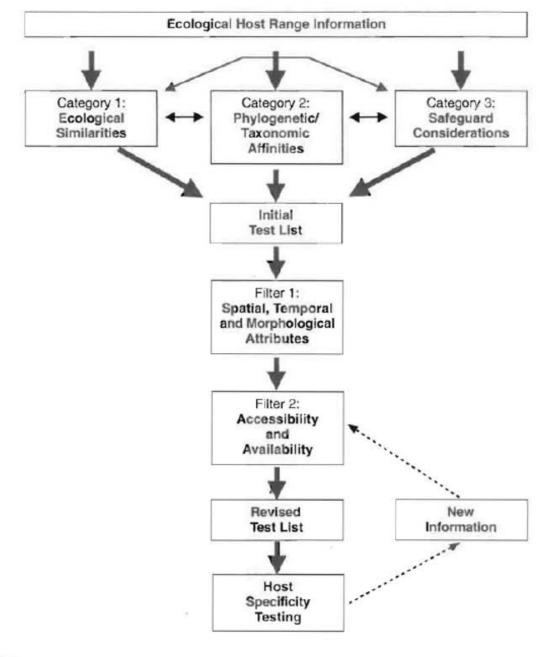
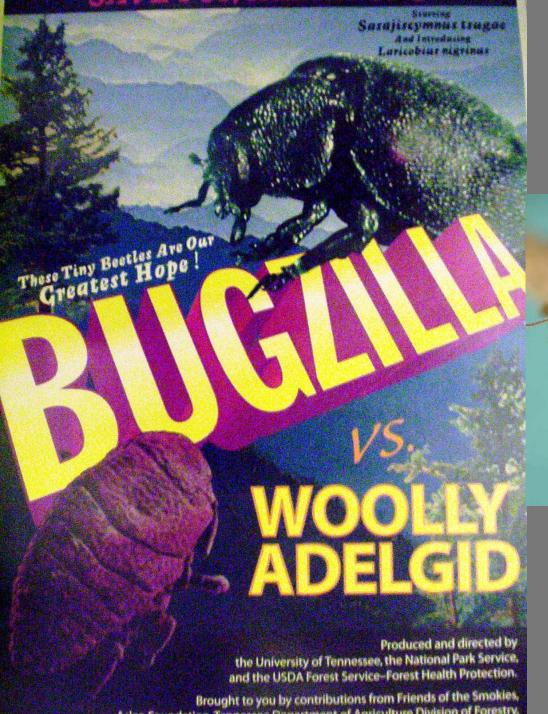



Fig. 2.1. Recommendations for the selection of non-target species for a test list to be applied in host specificity testing of invertebrates for biological control of arthropods.

Sasijiscymnus tsugae

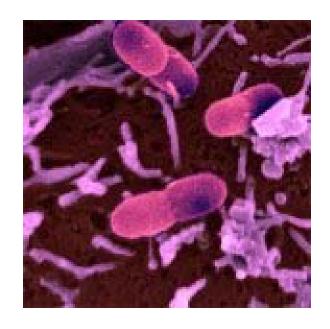
Laricobius nigrinus

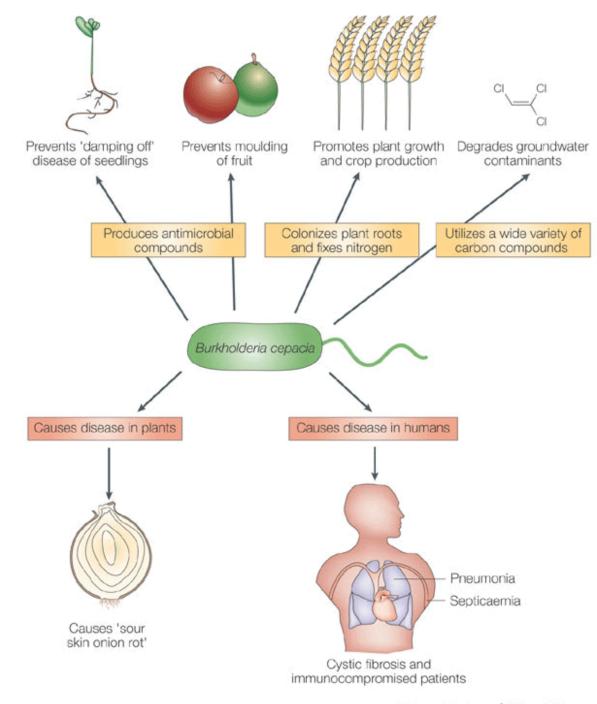
Tetrastichus planipennisi

Oobius agrili

Spathius agrili

Lepismadora algodones


Sadahiro Ohmomo 大槐 定洋 Kôyô Akiyama 秋山 黄洋



1997 Endless Science Information

from E. Mahenthiralingam et al., 2005

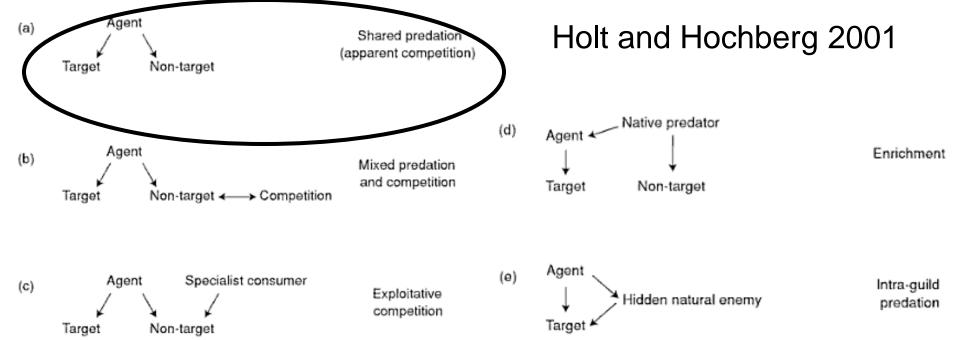
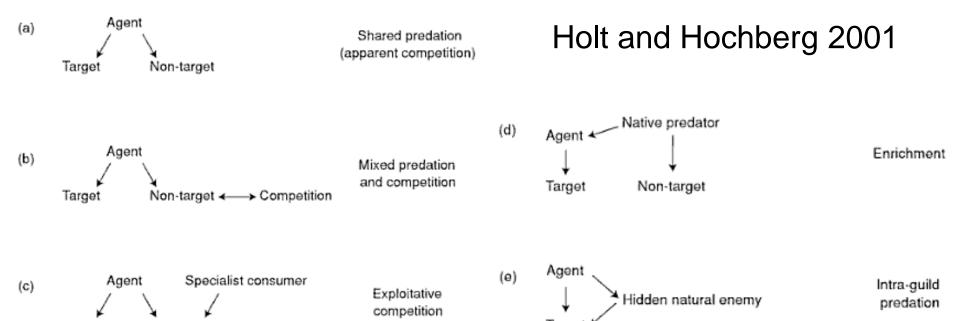



Fig. 2.1. Community modules. The word 'module' refers to a specified structure of interactions among a small number of species. A number of modules are likely to describe indirect impacts of biological control. For simplicity, the lines indicate that two species interact (a more detailed food web diagram would have pairs of arrows and signs, describing reciprocal impacts of each species). (a) Shared predation: impacts upon non-targets reflect interactions between agent and target (as in apparent competition). (b) Mixed predation and competition: impacts upon non-targets are aggravated by the presence of competing species. (c) Exploitative competition: the agent exploits a non-target species which is required by another non-target consumer. (d) Enrichment: introduction of the agent enriches the diet of a native predator, with impacts upon non-target prey (a more elaborate version of the shared predation module). (e) Intra-guild predation: the agent both competes with and attacks a non-target natural enemy.

Target

Non-target

Fig. 2.1. Community modules. The word 'module' refers to a specified structure of interactions among a small number of species. A number of modules are likely to describe indirect impacts of biological control. For simplicity, the lines indicate that two species interact (a more detailed food web diagram would have pairs of arrows and signs, describing reciprocal impacts of each species). (a) Shared predation: impacts upon non-targets reflect interactions between agent and target (as in apparent competition). (b) Mixed predation and competition: impacts upon non-targets are aggravated by the presence of competing species. (c) Exploitative competition: the agent exploits a non-target species which is required by another non-target consumer. (d) Enrichment: introduction of the agent enriches the diet of a native predator, with impacts upon non-target prey (a more elaborate version of the shared predation module). (e) Intra-guild predation: the agent both competes with and attacks a non-target natural enemy.

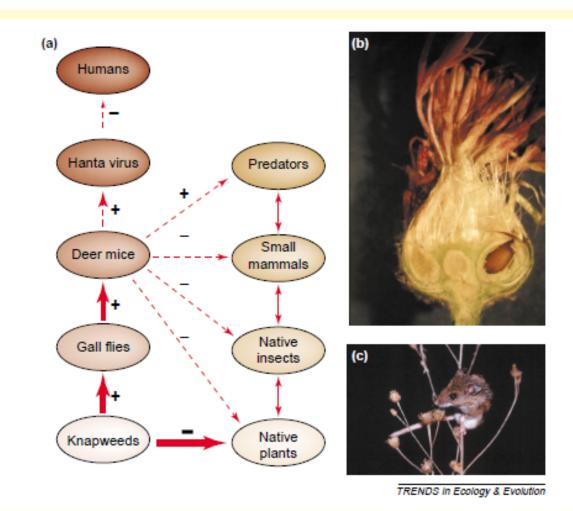
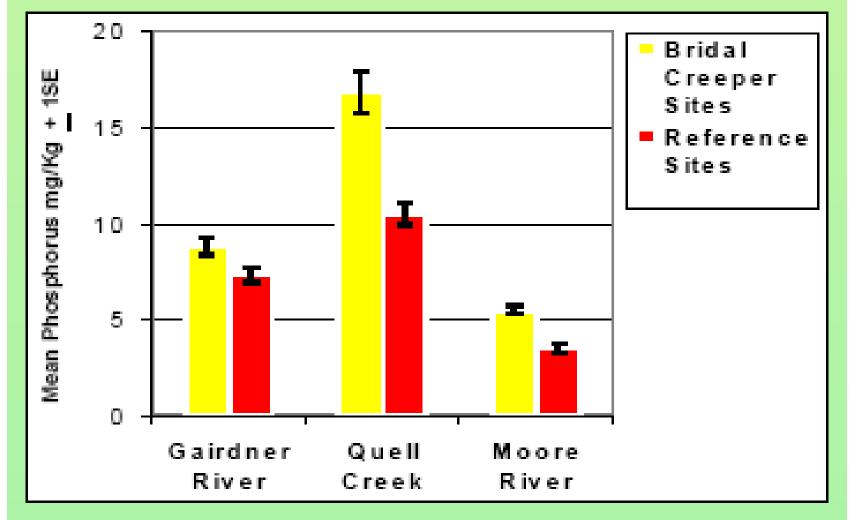



Fig. I. Currently documented (solid lines) and postulated (dotted lines) direct and indirect effects (a) associated with gall fly *Urophora affinis* and *U. quadrifasciata* biocontrol agents introduced for the control of spotted knapweed *Centaurea maculosa* (b). The *Urophora* biocontrol agents exhibit very weak negative top-down effects on *C. maculosa*. Because of their lack of control over the weed, *C. maculosa* exhibits very strong bottom-up effects on the biocontrol agents. The resulting superabundance of the biocontrol has facilitated the bottom-up flow of energy further out into the native system by subsidizing native predators such as deer mice *Peromyscus maniculatus* (c) [19] that are integrated into native food webs. The extent to which this unintended outcome is likely to carry out into the system is a function of the strength of the various interactions. The most important interaction is that between the biocontrol and the native consumer. In the case of the deer mouse, this interaction has proven to be very strong [20], increasing the likelihood that other postulated nontarget indirect effects will follow. Line thickness indicates interaction strength. (c) reproduced with permission from Milo Burcham.

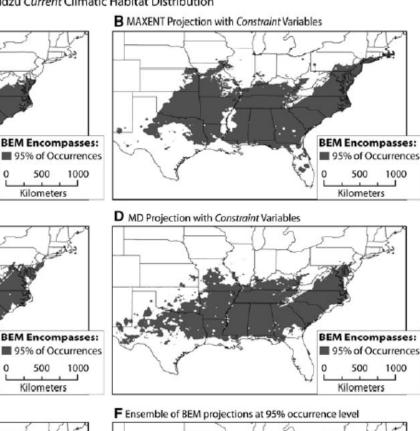
Figure 1. Bridal creeper invasion, Fitzgerald River National Park, W.A. *Asparagus asparagoides* from Peter Turner

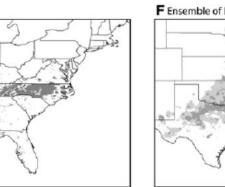
Figure 3. Bridal creeper sites have higher levels of phosphorus available to plants (Colwell method) (F = 64.87; d.f. 1,30; p < 0.001).

Cactoblastis cactorum, the cactus moth

Kudzu Current Climatic Habitat Distribution

from Bradley et al. 2010

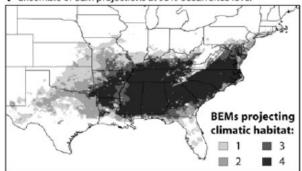

Fig. 1 Kudzu climatic habitat under current climate conditions. a Bioclimatic envelope based on the MAXENT model using predictor variables selected based on land area released. b Bioclimatic envelope based on the MAXENT model using predictor variables selected based on those that most constrain distribution. c Bioclimatic envelope based on the MD model using predictor variables selected based on land area released.


Kudzu >1% Cover

A MAXENT Projection with Release Variables

C MD Projection with Release Variables

E Current Distribution of Kudzu


1000

500 1000

Kilometers

500

Kilometers

d Bioclimatic envelope based on the MD model using predictor variables selected based on those that most constrain distribution. e 1/4 USGS quadrangles with greater than 1% cover of Kudzu in the southeast US based on expert opinion (Marvin et al. 2009). f Sum of bioclimatic envelope models a-d. Areas identified as climatic habitat by all four BEMs are more likely at risk from kudzu invasion

kudzu

Ecological and Evolutionary Responses to Recent Climate Change

Camille Parmesan

Section of Integrative Biology, University of Texas, Austin, Texas 78712; email: parmesan@mail.utexas.edu

Annu. Rev. Ecol. Evol. Syst. 2006. 37:637–69

First published online as a Review in Advance

The Annual Review of Ecology, Evolution, and

Systematics is online at http://ecolsys.annualreviews.org

This article's doi: 10.1146/annurev.ecolsys.37.091305.110100

Copyright © 2006 by Annual Reviews.

All rights reserved 1543-592X/06/1201-0637\$20.00

Key Words

aquatic, global warming, phenology, range shift, terrestrial, trophi asynchrony

Abstract

Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to

local or regional climate change through correlations between cli

mate and biological variation, field and laboratory experiments, an

From R.W. Pemberton 1984, Native plant considerations in the biological control of

leafy spurge.

Fig. 4. Distribution of rare spurges which are under review for legal protection as threatened or endangered status. H = Euphorbia hooveri L.C. Wheeler, PL = E. playsperma Engelm., PE = E. perennans (Shinners) Warnock & M. Johnst., GO = E. golondrina L.W. Wheeler, F = E. fenderli Torr. & Gray var. triligulata, T = E. telephiodes Chapm., PU = E. purpurea (Raf.) Fernald, G = E. garberi Engelm. ex Chapm., D = E. deltoidea Engelm. ex Chapm., C = Chamaesyce cumulicola Raf., PO = C. porterana Small.

Fig. 5. Distribution of Euphorbia spatulata Lam., a subgenus esula species which could serve as a bridge from leafy spurge to the rare spurges under review.

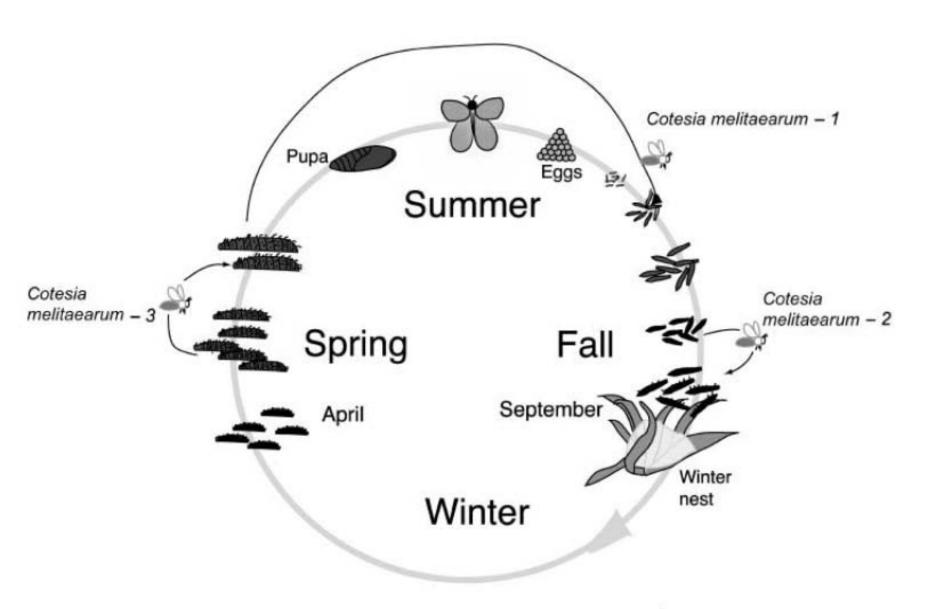


Fig. 1. The life cycle of the butterfly Melitaea cinxia and parasitoid Cotesia melitaearum in Åland, Finland.

Effects of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera: Psylloidea) on dwarf willow (Salix Iapponum) in Norway

JANE K. HILL and IAN D. HODKINSON
School of Biological and Earth Sciences, Liverpool John Moores University, Liverpool

from T.M. Bezemer and T.H. Jones, 1998. Oikos 82:212-222

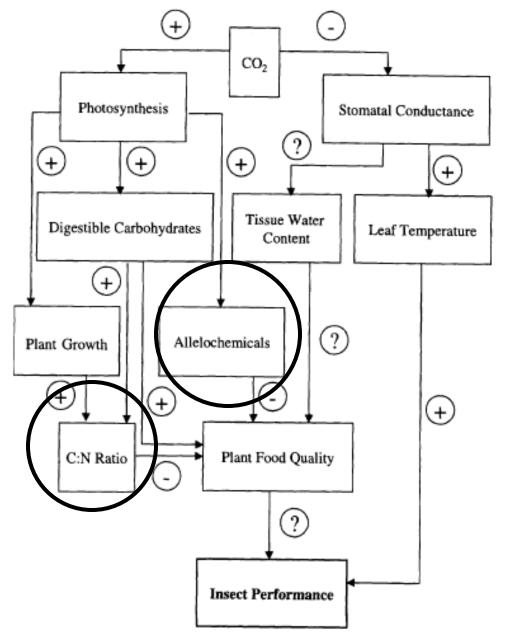


Fig. 1. A conceptual model of possible CO₂-induced changes in plant food quality and how these may affect insect herbivore performance (also see Jones and Coleman 1991).

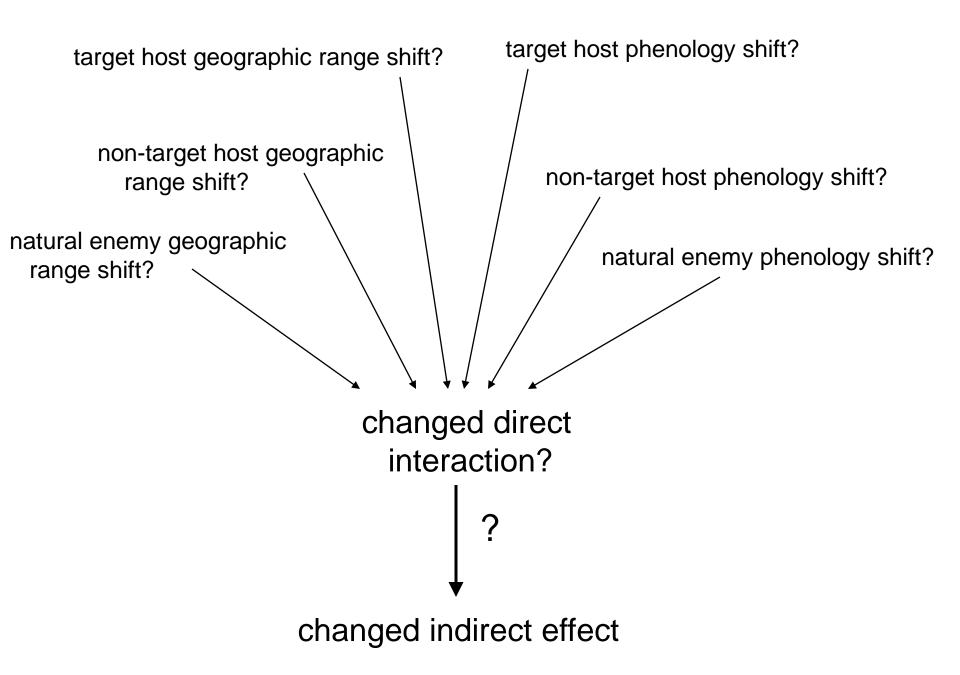


Table 2. Qualitative scales for likelihood (a), magnitude (b) and level of risk of adverse effects (c) (after Hickson et al., 2000)

(a) Likelihood	Description
Very unlikely	Not impossible but only occurring in exceptional circumstances
Unlikely	Could occur but is not expected to occur under normal conditions
Possible	Equally likely or unlikely
Likely	Will probably occur at some time
Very likely	Is expected to occur
(b) Magnitude	Description
Minimal	Insignificant (repairable or reversible) environmental impact
Minor	Reversible environmental impact
Moderate	Slight effect on native species
Major	Irreversible environmental effects but no species loss, remedial action available

(c) Level of risk of adverse effect

Likelihood	Magnitude				
	Minimal	Minor	Moderate	Major	Massive
Very unlikely	Insignificant	Insignificant	Low	Medium	Medium
Unlikely	Insignificant	Low	Low	Medium	High
Possible	Low	Low	Medium	Medium	High
Likely	Low	Low	Medium	High	High
Very likely	Medium	Medium	High	High	High

van Lenteren et al. 2003

Living organisms, including biological control agents:

1)Disperse

1) Evolve

We are severely limited in our ability to predict the exact trajectory of both processes!

Bigler and Kölliker-Ott, 2006

Table 16.1. Categories of costs and benefits of using invertebrate biological control agents.

Category	Costs	Benefits		
Economy				
Applicant/	Development of agent (research,	Sales of agent, profits, sustainable		
distributor	rearing, dossier for application, marketing)	business (estimate potential markets in space and time)		
Farmer	Market price of agent and its application	Control of pest with adequate efficacy higher yield and quality of product, higher revenue		
Consumer	Higher prices and apparent lower quality of product (food, fibres, etc.)	Lower prices and apparent higher quality of product (food, fibres, etc.)		
Society	Agent costs subsidized by government	Control of pest with no/few risks to humans, animals and environment		
Human and animal	Allergies	No hazards (exposure of users and		
health	Stings or bites	residues in food and feed) from other		
	Nuisance	pest control options (e.g. pesticides)		
Environment				
Soil, water, air	No costs	Prevents pollution by alternative contro options (e.g. pesticides)		
Biodiversity and	Adverse effects on plants,	Control of pest with no/little effects on		
ecosystems	animals, microorganisms and	plants, animals, microorganisms and		
	on ecosystem functions	their functions		
	Introduced species cannot be	Replacement of control options with		
	eradicated if established	high impacts on environment		