Biological Control of the Ambermarked Birch Leafminer (*Profenusa thomsoni*), an invasive species in Alaska

Anna L. Soper¹, Roy Van Driesche¹ and Richard C. Reardon²

- 1.Graduate Program PSIS/Entomology; University of Massachusetts-Amherst
- 2.USDA Forest Service, Morgantown, WV

Ambermarked Birch Leafminer

- Profenusa thomsoni
- Hymenoptera: Tenthredinidae
- Parthenogenetic
- 1 generation/year in Alaska

Life cycle corresponds to symptom development...

Profenusa thomsonii

Overwinter in soil September-June

Larvae drop to soil August-September

Prepupa

Adult

Life Cycle

Adults emerge June-July

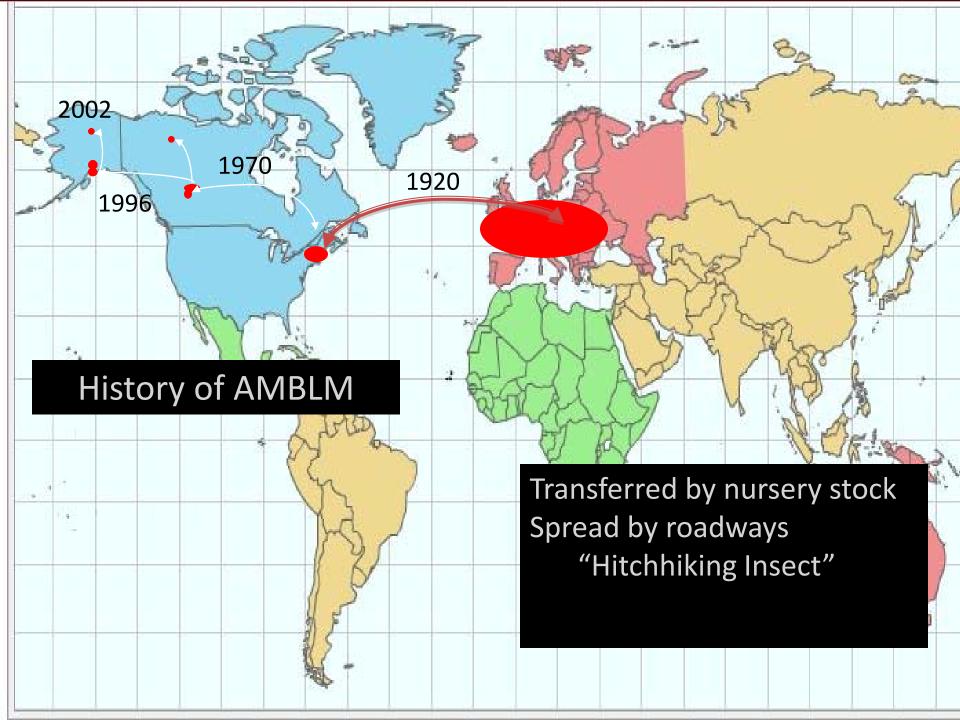
Oviposit eggs

Larvae hatch July-August

Larvae feed
Leaf symptoms develop
July-August

Larval Stages

Photos by Chris MacQuarrie and Ed Holsten


Slide by J. Lundquist

Damage caused by Amber Marked Birch Leaf Miner

- Fewer Tree species
 - Unlimited resource
- No Natural Enemies
- Climate change
 - Alaska experiencing warmer summers
- Damage estimated to cover 140,000 acres in Alaska

Alberta biological control

In 1992 Lathrolestes
luteolator was
reported attacking
Profenusa thomsoni

(Digweed, S.C. (1998) Environmental Entomology 27: 1357-1367)

Alaska biological control

 In 2003 Cooperative program initiated with the USDA Forest Service, University of Alberta and the Canadian Forest Service

- Parasitoid wasp
 Lathrolestes thomsoni identified for release
- In 2006 University of Massachusetts-Amherst joined to continue with the project

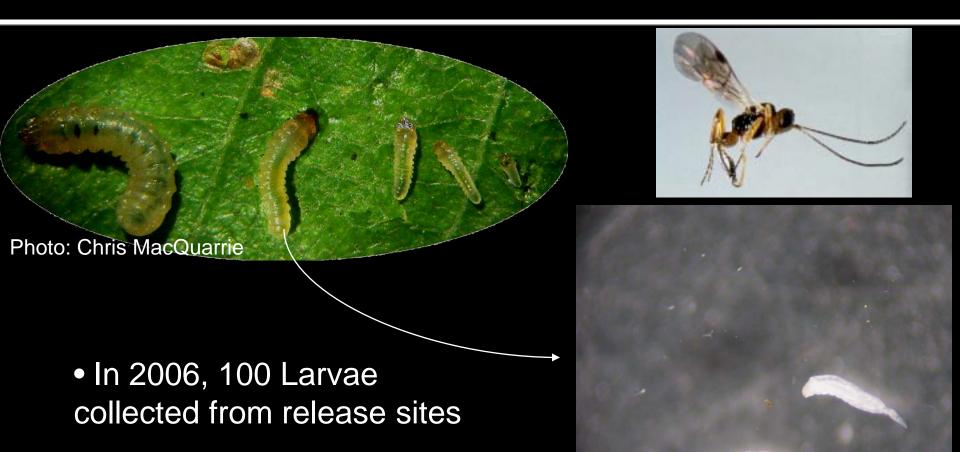
Biocontrol Agent

- Hymenoptera: Ichneumonidae
- Koinobiont endoparasitoid
- One generation/year
- Lathrolestes thomsoni
- Wasps collected from Alberta and Northwest Territories, Canada
- A total of 3636 wasps released from 2004-2008 at eight release sites

Photo: Chris MacQuarrie

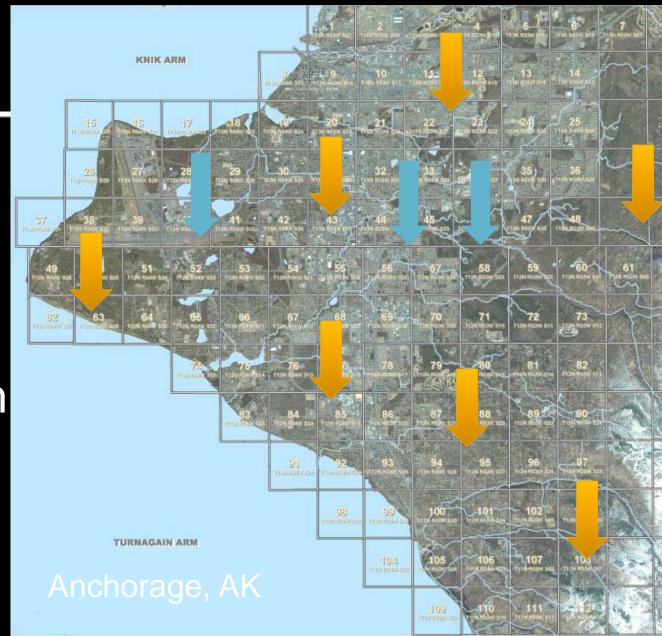
Release of wasps

- Wasps released at eight locations in Alaska
 - Five sites in Anchorage
 - Sites expanded to Kenai Peninsula and Eielson Air Force Base


Free release of wasps

- Wasps released directly on to leafminer infested foliage
- Oviposition witnessed immediately

Dissections for establishment



Dissected to determine

percent parasitized

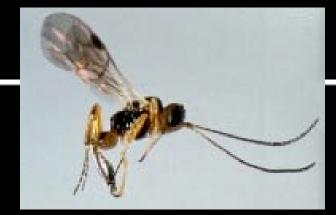
Release Sites

Parasitism observed

Native Parasitism

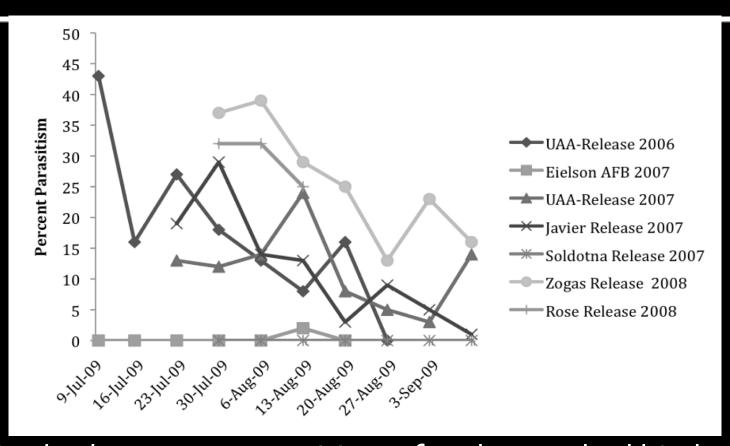
- PCR Molecular techniques
 - Matched larval sequences in the COI gene to wasps recovered at permanent plots
- Determined to be previously undescribed
 - Identified by Alexey
 Reshchikov as

 Lathrolestes soperi



Determining Percent Parasitism

- PCR Molecular techniques
 - Matched larval sequences in the Barcoding region of the COI to wasps recovered at permanent plots
- Can genetically identify
 L. thomsoni wasps and
 L. soperi wasps


Methods

- One hundred larvae collected from all release sites from the first week in July until the third week in September 2009 and 2010
- Larvae were dissected to determine percent parasitism
- Parasitoid larvae preserved in 100% Ethanol
- DNA was extracted and subject to PCR

Percent Parasitism

 Lathrolestes spp. parasitism of ambermarked birch leafminer (Profenusa thomsoni) larvae collected at L. thomsoni release sites from July-September 2009 in Anchorage, Alaska

Parasitoid Split Ratio

				Parasitoid Split Ratio		Calculated % Parasitism ²	
Sample Date	Release Site/Year	Total	No. of successful	L. soperi	L. thomsoni	L. soperi	L. thomsoni
	of first release	Percent	DNA	_		_	
		Parasitism ¹	amplifications				
9 July 2009	UAA-Release 2006	43	26	0.42	0.58	18	25
15 July 2009	UAA-Release 2006	16	13	0.47	0.53	7	9
22 July 2009	UAA-Release 2007	27	19	0.32	0.68	5	12
6 August 2009	Javier Release 2007	14	11	0.91	0.09	13	1
6 August 2009	Rose Release 2008	23	16	0.81	0.19	26	6
6 August 2009	UAA-Release 2006	13	13	0.85	0.15	11	2
6 August 2009	UAA-Release 2007	14	12	0.75	0.25	11	4
6 August 2009	Zogas Release 2008	39	27	0.89	0.11	35	4
11 August 2009	Eielson AFB 2007	1	1	0	1	0	1
12 August 2009	UAA-Release 2007	24	18	0.83	0.17	20	4
13 August 2009	Zogas Release 2008	29	24	0.92	0.04	27	1
20 August 2009	UAA-Release 2007	9	9	0.89	0.11	8	1
20 August 2009	Zogas Release 2008	25	20	0.90	0.10	23	3
27 August 2009	UAA-Release 2007	5	3	0.67	0.33	3	2
27 August 2009	Zogas Release 2008	13	11	0.91	0.09	12	1
1 September 2009	Zogas Release 2008	23	19	0.89	0.11	21	2

Rates of AMBLM parasitism by *Lathrolestes* species at *L. thomsoni* release sites in Anchorage, Alaska, in 2009

2010 Methods for Establishment

- Sweep Sampling employed to determine location and time of flight activity
- All release sites

 (except Eielson) sweep
 sampled each week
 from early June-late
 September
- Wasps counted and rereleased

Establishment

- From 2009-2010 wasps were recovered at all release sites
 - In 2010 42 wasps recovered from 1 site alone

Sweep sampling for spread

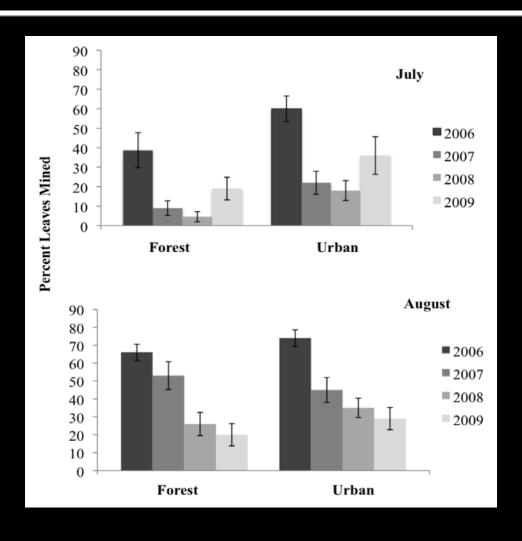
Twenty neighboring trees sampled in four directions

At one release site, wasps spread 100m

Establishment of Permanent Plots

- Twenty sites established within the city of Anchorage
- Single tree at each site
 - Betula papyrifera
- Assess before impacts of the pest
- Sites further classified
 - Urban
 - Forest

Establishment of Permanent Plots


Forest

Urban

Declining Densities

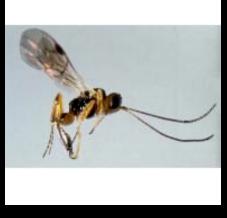
Densities of the leafminer are declining

Additional parasitoid discovery

- In 2006 noticed an additional wasp in the system
- When collecting from emergence traps, unknown wasp is the most commonly occurring
 - Accounted for 80% of wasps found in emergence traps over the season

Aptesis segnis

- Identified by Andy Bennett as Aptesis segnis
- Known to attack Profenusa canadensis (Hawthorn leafminer)
- Facultative hyperparasitoid
- Attacks the leafminer in the soil
- Similar system to that of European apple sawfly (Holocampa testudinea)
 - Aptesis nigrocincta and Lathrolestes marginatus


(Babendreir, D. (2000) Bulletin of Entomological Research 90: 291-297)

Aptesis segnis future research

- Evaluate the impact of Aptesis segnis
- What role does this wasp play in the system?
- Could Aptesis segnis be a successful biological control agent?
- What are the interactions between A. segnis, L. thomsoni, and L. soperi?

Conclusions

- Successfully established Lathrolestes thomsoni at all release sites in Alaska for control of the Ambermarked Birch leafminer
- Three parasitoids known to attack Profenusα thomsoni in Alaska
- DNA sequencing has made it possible to identify larval parasitoid wasps to distinguish between the introduced and native Lathrolestes species
- Potential for Aptesis segnis to offer control of the leafminer as well
- Population densities appear to be declining
 - Cool temperatures
 - Increased parasitism

Leaves in 2010

Acknowledgements

- State and Private Forestry
 - Steve Patterson, Ken Zogas, John Hard, Gwen Marcus, Cyndi Snyder, Chuck Frank, Jim Kruse, Chris Scott, Tiphanie Henningson, and Steve Swenson
- APHIS permitting
 - Roger Burnside and Ann Ferguson
- Taxonomists
 - Andrew Bennett, Canadian Collection of Insects
 - Alexey Reschikov, University of St Petersburg
- Richard Reardon
 - USDA Forest Service Grant Number: USDA FS, #05-CA-11244225-009 amendment #2
- University of Massachusetts
 - Roy Van Driesche, Joe Elkinton, Keith Dziuba, Ben Normark, Rodger Gwiazdowski, Dhruv Kumar, Jeremy Andersen, Jeff Boettner and Annie Paradis
- UAF-Extension
 - Corlene Rose and Michael Rasy
- University of Alberta and Canadian Forest Service
 - Chris MacQuarrie, Dave Langor, and Scott Digweed