Management of RPW: Development and Implementation of Small to Large Scale Control Programs

Jose Romeno Faleiro

Goa, India

jrfaleiro@yahoo.co.in

International Conference on the Red Palm Weevil inTunisia 3-5 May, 2017 [Organized by: Ministry of Agriculture, Water Resources & Fisheries of

Tunisia, IRESA, US Embassy in Tunis, SOS BIAA]

Rhynchophorus Distribution

The California Report of 2010 is RSPW (R. vulneratus) and not RPW

Geographical distribution of RPW

Asia			Africa	Europe	Americas
India*	Thailand	UAE (1985)	Egypt** (1992)	Spain** (1995)	Curacao Islands (Caribbean-2009)
Pakistan*	Cambodia	Qatar	Morocco**	Turkey**	USA, 2010???
Sri Lanka	Vietnam	Saudi Arabia	Libya** (2009)	Italy**	
Myanmar	China*	Kuwait	Tunisia 2011	Greece**	
	Taiwan	Oman	Mauritania 2015	France**	
	Philippines	Bahrain		Portugal**	
	Malaysia	Israel		Cyprus**	
	Indonesia	Palestine		Malta**	
	Timor	Jordan		Georgia(2009)	
	Papua New Guinea	Iran		Croatia (2011)	
	Solomon	Iraq ? (1918)		UUV (201C)	
	Is./Australia	Iraq 2015		UK (2010)	
		Lebanon (2010)			
		Yemen 2013			

* Grow coconut & date palm ** P. canariensis

RPW a Major Threat to Heritage/Historic Palms World Wide

Al Hassa, Saudi Arabia

Tangier, Morocco

Elche, Spain

Host range of *R. ferrugineus* (1956 to 2013) : 4 to 40 palm species

Sr. No.	Host Palm Species	Reference
1	Cocos nucifera, Phoenix dactylifera, Metroxylon sagu and Corypha umberaculifera	Nirula, 1956
2	<i>Cocos nucifera</i> , <i>Areca catechu</i> , <i>Arenga pinnata</i> , <i>Caryota</i> sp. <i>Coelococcus</i> sp., <i>Corypha</i> sp., <i>Elaeis guineensis</i> , <i>Livistona</i> sp., <i>Metroxylon sagu</i> , <i>Nypa</i> sp., <i>Oncosperma</i> sp. and <i>Phoenix</i> sp.	Lever, 1969
3	Areca catechu, Arenga pinnata, Borassus flabellifer, Caryota maxima, Caryota cumingii, Cocos nucifera, Corypha gebanga, Corypha umberaculifera, Corypha elata, Elaeis guineensis, Metroxylon sagu, Oreodoxa regia, Phoenix canariensis, Phoenix dactylifera, Phoenix sylvestris, Sabal umbraculifera, and Washingtonia sp. Chamaerops humilis and Howea forsteriana (syn. Kentia forsteriana)	Esteban- Duran <i>et al.</i> , 1998 (OJEU, 2008; EPPO, 2009).
4.	40 palm species world wide (Report from Portugal) http://www.savealgarvepalms.com/en/weevil-facts/host- palm-trees	Anonymous, 2013

Most Preferred Hosts – *Phoenix canariensis*, *P.dactylifera* and *Cocus nucifera*

Large Stretches of Monocultures of Young Palms

Currently nearly 1.0 million ha are under date palm in the NENA region with an estimated 50 million palms in the susceptible age group of less than 20 years

EU Rules to Regulate the Palm Trade : Official Inspections of Immobilized Areas (2007/365/CE)

- -Delimitation of survey and demarcated areas
- -Three monthly official inspections
- Annual crop declaration
- -Application of phytosanitary treatments
- -Registration of planting material movement
- -Use of plant passport to monitor trade of palms

A Quarantine Protocol for Treating Date Palm Offshoots against RPW

RPW larval mortality in date palm offshoots dipped in different conentrations of Fipronil at different durations

Al-Shawaf et. al. 2013. Journal of Plant Protection Research, Poland

Behavior & Bio-ecology of RPW

GIS Based Spatial Spread of RPW [Al-Soodha (126ha) KSA- 2008]

Anonymous, 1998. Final report of the Indian Technical Team (Part A), - Red palm weevil control project, Ministry of Agriculture and Water, Kingdom of Saudi Arabia, 65pp.

Predisposing Factors for RPW Attack

Neglected Gardens

- - Wounds on the Palm - - -

Breeding site – Cut Palm

Closed Garden

In-groove Humidity*

Abraham et al., 1998 ; Aldryhim et al., 2003*

Damage-Detection-IPM

Symptoms of Damage Due to RPW

Extensive Damage to the Urban Landscape

Source: Agrinvest SRL, Italy

'Rome Declaration' To Control & Eradicate RPW Adopted After the Scientific Consultation and High Level Meeting, 29-31 March 2017

Recognize

- ✓ The devastating impacts of RPW
- ✓ RPW Remains a severe challenge
- A strategy supported by adequate human and financial resources with systematic planning, good coordination and involvement of all stakeholders, supplemented by the sensible use of new technologies, can lead to eradicating RPW;

Reaffirm the importance of collaborative efforts and commitments at the country, regional and global levels to stop the spread of this devastating pest; Agree with the proposed Framework Strategy for Eradication of the Red Palm Weevil and seek the political will and necessary commitments to implement the Framework Strategy

http://www.fao.org/food-chain-crisis/high-level-meeting/en/ http://www.fao.org/news/story/en/item/854399/icode/

Success Stories of Control & Eradication

✓ Control of RPW in Mauritania

✓ Eradication of RPW in the Canary Islands, Spain (May 2016)

<u>Mauritania</u>

- Inspection of palms to detect infestation
- Pheromone trapping / Attract & Kill
- Eradication of Infested Palms
- Plant Quarantine measures
- Treatment of wounds
- Prohibited offshoot removal in the hot spot
- Training of all stakeholders
- Active participation of the farmers in the program
- Proactive Extension Campaign

Source – Mauritania : FAO

Canary Island : Coordinated Action Plan

- IPM : Zone Delemination (1km: intensive surveillance /3km: guided surveillance), Visual Inspection (intensive, guided, system alert), Eradication of Infested Palms, Chemical Treatments, Trapping, Cultural Practices
- Legislation (EU, Spain, Canary Island)
- Continuous Training
- Awareness & Extension
- Risk Evaluation
- Control Movement of Planting Material
- GIS : Database, Mobile Application, Web Application, Web Viewer

Source – Canary Island : Moisés Fajardo Bello , Coordinador GMR Canaria ;

HPR/ Agronomic Practices and RPW Attack

Host Plant Resistance Not Exploited : Does RNAi Hold the Key?

Frond and Offshoot Management

Irrigation Method & Palm Density

Poor Field Sanitation

Detecting RPW Infested Palms

<u>*Current Practice*</u> •Visual •Pest Collection (Trapping)

Experimental

Detecting Chemical Signatures

Acoustic Detection

Infrared Cameras

Thermal imaging

Detecting RPW Infested Palms

Sound Detection Devices

Sensor Based Detection

Visual Inspection of Palms to Detect RPW Infestation

Photos by : Moisés Fajardo Bello Coordinador GMR Canarias

Impact of Periodic Visual Inspection of Palms [30 ha Date Plantation]

Months (Oct, 2013 - Sep, 2014)

Regular Visual Inspections : Key to the Control of RPW

Semiochemicals

Semiochemicals are well-known management tools especially for cryptic species (Soroker et al., 2015)

- **RPW Pheromone**: 4S, 5S nonanol & 4S, 5S nonanone
- Host Attractants : ethyl acetate , ethyl alcohol, ethyl propionate, pentan-1-ol , 2-methoxy-4-vinylphenol & gamma-nonanoic lactone
- > **RPW Repellents** : methyl salicilate , α -pinene, 1-octen-3-ol & geraniol

(Hallett et al., 1993;Soroker et al., 2015)

Adopt the Best Protocols to Enhance Trapping Efficiency

Pheromone Trapping : Overview

Trap Design and Lures

Food Baits and Kairomones

Trap Density and Smart Traps

- ✓ Develop mobile application for data collection and transmission
- ✓ Develop a GIS data base

Trap & Bait Free Trapping

Comparative weevil catches in red palm weevil pheromone traps using different food baits (13/3/2001-11/5/2001)

Influence of ethyl acetate on *R.ferrugineus* captures in food baited pheromone traps (Goa, India 30/12/2006 and 13/1/2007)

Faleiro JR. 2005. Technical Bulletin No. 4. ICAR Research Complex for Goa. 40pp

Effect of Trap Servicing (replacement of food bait) on Weevil Captures in RPW Pheromone Traps (March, 2002)

Faleiro JR. 2005. Technical Bulletin No. 4. ICAR Research Complex for Goa. 40pp.

Efficacy of RPW pheromone lures tested in date plantations of Al-Ahsa, Saudi Arabia (21June - 19 July, 2011 and 8 - 29 April, 2012)

Pheromone Lure Tested	Mean Weevil Captures*				
	Trial-I	Trial-II	Cumulative		
Pherobank lure, Netherland	1.67(2.60)	1.799(3.00)	2.38(5.60)		
IT189 ISCA Lure-ferrugineus ,ISCA	1.50(2.00)	1.12(0.80)	1.78(2.80)		
Technologies, USA					
Rhylure WAT-700, Russell IPM, UK	1.57(2.20)	1.33(1.60)	1.95(3.80)		
Ferrolure+, Chem Tica	1.14(1.20)	1.24(1.40)	1.67(2.60)		
International, Costa Rica					
CD (p=0.05)	NS	NS	NS		

*Data transformed using square root transformation. Figures in parenthesis are original mean values of five replications. NS= Non significant.

Trapping Efficiency and Field Longevity of RPW Pheromone Lures 18 Aug – 14 Oct, 2015, Al-Hassa, Saudi Arabia

Mean monthly weevil catch per trap and release of pheromone [Ferrolure] (mg/day) in Goa, India - January, 2000 to December, 2001

Response of *R. ferrugineus* to the aggregation pheromone in choice olfactometer assays

Per cent weevils attracted

Faleiro, JR and El-Shafie, HAF. 2012. Red Palm Weevil Symposium. ESA Meeting. Knoxville, Tennessee, USA. 14-16 November, 2012.

FAO Mission 2010

Will trapping alone do ? The North African Experience

•Trap captures increased from 10 weevils / trap / month during May ,2009 to over 100 weevils / trap / month during February, 2010

Morocco

•Trap captures within 2-5 weevils / trap / month (2009-10) Morocco

Maps : http://www.lonleyplanet.com

Pheromone traps set at two densities in date palm (1994-1998)

A:1trap/3 ha B:1trap/1.5ha

Anonymous, 1998. Final report of the Indian Technical Team (Part A), - Red palm weevil control project, Ministry of Agriculture and Water, Kingdom of Saudi Arabia, pp 1-65.

Additional Traps (F4ad-3 : Al-Suhemia-1)

Position (UTM coordinates) for the additional 28 RPW-Pheromone Traps in Al-Suhemia-1

Additional Trap

Original Trap

DPRC,KFU /Directorate of Agriculture, Al-Hassa collaboration GIS Support : MA Massoud

(Saudi Aramco-KFU Project on RPW)

Experimental details of area-wide RPW-IPM and mean monthly weevil captures (Dec 2011-May 2012)

Treat ment No.	IPM module	Canal #	Area (ha)	Trap density	**Mean monthly catch /trap in original traps ± SE	Capture/ha
T 1	Regular RPW-IPM*	F4ad2 and P2g2	21	0.67 traps/ha	2.98± 0.58	11.81
T2	Regular RPW-IPM + Addition of Food – baited pheromone traps @ 4 additional around each existing traps	F4ad3 and P2g3	18	3.33traps/ha	1.48±0.32	18.05

Additional Traps in T2 captured 219 weevils deep inside the plantation/canal

*Mass trapping (0.67traps/ha) adult weevils, periodic checking palms for infestation, preventive and curative insecticidal treatments and eradication of severely infested palms.

** Mean monthly captures significantly different (T-test: p=0.05)

Pheromone Trap Density Trial, Al Hassa, 2009

Faleiro, JR, El-Saad, MA and Al-Abbad, AH. 2011. International Journal of Tropical Insect Science. 31:75-77.

Electra Trap (Without Food Bait) – Dry Trap

Weevil Captures in Red Palm Weevil traps 31 Jan-20 Feb, 2016 [Al-Hassa, Saudi Arabia]

Bait and Trap Free Pheromone Technology for RPW

30 Points/ha

250-400 A&K Points/ha

First A&K Study on RPW: EI-Shafie et al., 2011 [King Faisal University, Saudi Arabia]

Paste Formulation of A&K Against RPW

Smart Ferrolure

RPW Attract & Kill Products

Hook-RPW

Smart Ferrolure

Dead Weevils in A&K Treated Plots

Proof of Kill : 10%- 50% of Points in Containers

A & K Trial with Hook-RPW in Al-Qassim, Saudi Arabia

A&K Trial with Hook-RPW in Al-Hassa, Saudi Arabia

A&K Trials with Smart Ferrolure in Oil Palm [01 September, 2015 to 09 April, 2016]: Goa, India

No-Bait / No-Trap Ferrugineol Based A&K Techniques : Important to Manage RPW in Neglected Plantations

A&K Technology Deployed to Control RPW in Mauritania

A Push-Pull Strategy using RPW Repellents & Pheromones

Chemical Control

Preventive Chemical Treatments

Low Pressure High Volume Sprays

Targeted Preventive Sprays -After Offshoot & Frond Removal

- ✓ Plantations
- ✓ Nurseries
- ✓ Ornamental/Avenue Palms

Curative treatment of RPW infested palms

Mechanical Sanitation

Palm Injectors ?

Insecticide Residues Due to Both Preventive & Curative Chemical Treatments

Biological Control

Potential Biocontrol Agents	Scientific Name
Insects (Wasp, Earwig)	Scolia erratica , Sarcophaga fuscicauda, Chelisoches moris
Bacteria	Pseudomonas aeruginosa, Bacillus sp., Serratia sp. B. sphaericus, B. mgaterium, B. laterosporus, and B. thuringinsis,
Fungus	Beauveria bassiana, Metarhizium anisoplieae
Virus	Cytoplasmic Polyhedrosis Virus (CPV),
Yeast	
Entomo-Pathogenic Nematodes (EPN)	Heterorbhabditis spp., Steinernema abbasi, Heterorbhabditis indicus, Teratorhabditis palmarum, Steinerema sp., H. indica, and Rhabditis sp.
Birds (Indian tree pie bird and Crow pheasant bird)	Dendrocitta vagabunda parvula

Under field conditions, imidacloprid and *S. carpocapsae*, either alone or in combination were not significantly different from each other, with efficacies ranging from 73 to 95 % (Dembilio et al., 2010). *Beauveria bassiana* solid formulation with high RPW pathogenicity and persistence, could be applied as a preventive as well as curative treatment for RPW control (Gűerri-Agulló et al., 2011).

Periodic Validation / Risk Assessment

AL-SUHEMIA (1997)

Number of traps = 181 Number of infestation=127 Number of palms= 30,000 (270ha) Catch/trap= 1.18 Per cent infestation= 0.45

1998- Final report of the Indian Technical Team (Part A), - Red palm weevil control project, Ministry of Agriculture and Water, Kingdom of Saudi Arabia, pp 1-65.

Periodic Monitoring & Evaluation of the RPW-IPM Strategy

Canary Island RPW Control Program : Effective use of Mobile Applications /GIS for Instant Communication [Data Collection, Transmission, Interpretation & Decision Making]

Photo by : Moisés Fajardo Bello Coordinador GMR Canarias

GIS : Canary Island Experience Decision Making Efficient planning Efficient use of resources Assessment of results and goal Assessment of workers Better Comunication

Future Possibility : Fabricate a Smart Dry Trap to Eliminate Servicing & 24x7 Data Collection

Mobile Data Collection - Workflow

Data gathered, analyzed for informed decision-making and actions performed by the team

Source : FAO

شکرا THANK YOU

Acknowledgements

- ✓ Food and Agriculture Organization of the UN
- ✓ Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia
- ✓ King Faisal University, Kingdom of Saudi Arabia
- ✓ Indian Council of Agricultural Research